Estimation of Moist Air Thermodynamic Properties using Artificial Neural Network
نویسنده
چکیده
In this study, the equations obtained non-iteratively are presented for moist air thermodynamic properties as a function of dry-bulb temperature and relative humidity. In this regard, an artificial neural network (ANN) was performed by using MATLAB software. In the ANN, dry-bulb temperature and relative humidity were specified as inputs, and water vapor saturation and partial pressures, wet-bulb and dewpoint temperatures were determined as outputs. The sensitivity of the neural network performance was also controlled, and acceptable accuracy was obtained for all estimations for practical applications. The moist air thermodynamic properties can be alternatively estimated with the mean absolute percentage error (MAPE) of less than 0,5% by using the developed model. With respect to the acquired results, this model supplies simple and correct predictions to specify moist air thermodynamic properties noniteratively. Determination of moist air thermodynamic properties using ANN approach is a good alternative to some other mathematical models.
منابع مشابه
Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملEstimation of coal swelling index based on chemical properties of coal using artificial neural networks
Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...
متن کاملUsing Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends
In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical ...
متن کاملUsing Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends
In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical ...
متن کاملModelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
متن کامل